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ERRATA AND ADDITIONS 

"Minimizing Functlonals on Normed-Linear Spaces" 

by 

A. A. Goldstein 

Page 3.  In (b) of the theorem replace L [0,1] by a uniformly convex 

Banach space. 

Page 4.  Line 7 from bottom. Assume E is uniformly convex.  By [6] p. 113. 

Page 8.  Line 6. for p > 1. 

Page 10. Insert after sentence of line 5: and f is uniformly F-differentiable 

on S if p > 2. The inequality  |a|2r + |b|2r 

-2|a|r|b|r[a,b]/|a||b| <. |a|2r-2(r2 + l)|a - b|2 where |a| > |b|, 

and a direct computation show that the F-derivative f' exists and 

is lipschitz continuous for all p > 1. 

Page 11. Line 12. Delete paragraph beginning with "By the theorem of I..." 

Replace this with the following: Moreover, the space £     is uniformly 

convex. This follows by a theorem of Smullan [12], which states that 

if the norm in a B-space is uniformly F-differentiable on the unit 

sphere, then the conjugate space is uniformly convex. 

Page 13. Replace ref [6] by M. Day, Normed Linear Spaces, Academic Press, 

N. Y., 1962. 

Add: 

[12]    V.  Smullan.    Sur la derivabilitd de la normed dans l'espace de Banach, 

C. R.  (Doklady), Acad. Sei.  U.R.S.S.,  Vol.  27,  (1940). p.  643-648. 
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ABSTRACT 

This paper extends results of  [1],   [2], of Goldstein,  and   [3] 

of Vainberg concerning steepest descent and related  topics.     An 

example  Is given taken from a simple  rendezvous problem in control 

theory.    The problem is one of minimizing a norm on an affine 

subspace.    The problem here is solved  in the primal.    A solution in 

the dual  is given by Neustadt   [4]. 



I.     GENERATION OF MINIMIZING  SEQUENCES 

Let    E   be a normed  linear space  (n.  1.  space),    x      an arbitrary 

point of    E   and    f    a functional defined on    E.    Let    S   denote the level set 

{x e  E  :  f(x)  <^ f(x
0)}    defined at an arbitrary fixed    x0 e E.    We 

denote by    f'(x)    the Frechet or    F-derlvative of    f    at    x.    We call 

^ f    uniformly   F-differentiable on    S    If    f    Is    F-dlfferentlable 
4 

on S and If 5(e)  In the definition of the F-derlvatlve Is constant 

on S.  The F-derlvatlve of f at x will be denoted by f'OO.  If 

g e E* the value of g at x will be denoted by  (g,x), and If 

h e E** the value of h at g & E*. by Ih.g]. Recall that If E 

and F are n. 1. spaces and A Is bounded linear operator from E to 

F,  In short A e B(E,F),  and If A Is onto then A~  exists and 

belongs to B(F,E) If and only If for some m > 0 and all x e E, 

||Ax| | >.m||x|| ; and that m| |xj | <J |Ax| | <_ M| |x| |  for all x In 

E Implies that M*1] |y| | <J IA'^I | <_ m"1! |y| |  for all y In F. 
i 

; We observe that  If    E    Is a reflexive Banach Space,    A t  B(E,E*)    and 
1 2 
I [Ax,x] ^.m||x||  for all x e E, then A Is onto and thus has an 

Inverse.  For, on the contrary supposition, take f  ^  M ■ range A. 

Choose g In E** such that g(f0) - dlst(f0,M) > 0, ||g|| - 1 and 

g(f) - 0 for all f In M.  Take i In E so that  [g.f] - [f,g] 

for all f In E*. Then 0 • [g,Ax] - [Ax.g]  for all x In E. 



Thus  [Ag.gl - 0 while ||g|| - ||g|| - 1. 0. E. D. 

Let 4» denote a bounded map from S to E satisfying the two 

conditions [f' (x),(|i(x)l >_ 0, and given e > 0 there exists 6 > 0 

such that  [f,(x),^(x)] < 6    implies  IJf'Cx)!! < e. Some examples 

of such mappings are the following: 

(1) Let A e B(E*,E) such that  ty.Ay] io|lyl|2 for all 

2 
y e E* and some o > 0. Let ^(x) ■ Af'Cx) and choose 6 ■ e a. 

Then Hf'U)! | < e. 

As a possible candidate for the operator A, suppose f is twice 

F-differentiable on E. Assume that for some u > 0, and some x 

in S the operator f"(x)  in E>(E,E*)  is onto and is "oounded below", 

that is, the bilinear functional satisfies [f"(x)zfz] ^p||z||  for 

all z in E.  Then | |f"(x)z| | ^ u| |z | |  showing that f"(x) has an 

inverse [f"(x)l  "Ac B(E*,E).  Since A has a bounded inverse, there 

exists a number o > 0 such that  | |Ay| | ^o||y||  for all y e E*. 

2     2 
Set z ■ Ay.  Then  lf"(x)z,z] ■ [y.Ay] ^ uo ||y||  showing the 

candidacy of A. 

(2) Suppose E is a reflexive Banach space. By the weak compactness 

of the unit sphere in E it follows that for some z , !|z0l| ■ It 

[f,(x),z0] - ||f'(x)||.  Set ♦(x) - z0||f,(x)||. Because 

2 
[f,(x),4)(x)l ■ IJf'Cx)!! , ^(x)  is the analogue of the gradient in 

Hilbert space.  When E is an L  space the point z  is obtained by 

considerations of equality in Holder's inequality. 



(3)    Since   Hf'Cx)!!   - sup{ [f (x) ,z]: | |z | |   - 1},    If    0 < a  <  1 

a point    z-    exists such     [f'M.z  ]   >^ a| | f' (x) | |.     If for fixed    a    and 

all    x e  S    we can find  such    z  ,    we may take    i>(x) « z   ||f*(x)| |. 

In what follows let    A(x,p) ■ f(x)  - f(x - p4)(x))    and 

g(x,p) ■ A(x,p)/plf' (x) ,<|)(x)].    Assume    E    is a normed-linear space and 

S    is the level set of    f    at    x.    in    E.     In what follows,  assume    0 < o < ^. 

Theorem.    Assume  that on    S    f    is uniformly F-differentiable or that 

the F-derivative    f     exists and is uniformly continuous.    Set    x. ..  ■ x. , 

when    [f' (x. ),(j)(x, )]  ■ 0;    otherwise choose*    p.     so that    o < g(x.,p.)   <^ 1 - o 

when    g(xk,l)  < o    or    Pk " !    when    g(xk,l) ^ o,    and set    xk+1 " xk - pk^(xk). 

(a) If    S    is bounded or    f    is bounded below then    {f'(x.)}    converges 

to    0   while    {f(x.)}    converges downward to a limit,    L.    If    S    is compact, 

then every cluster point of    {x, }    is a zero of    f*.    In addition,   if    4»(x. ) ■* 0 

and    f    has finitely many zeros,    {x. }    converges. 

(b) If    S    is convex and bounded and    f    is convex, 

L «  inf{f(x):x e  S}  » 6.     If,  in addition,    E    is a reflexive Banach space, 

then every weak cluster point of    {x. }    minimizes    f    on    E.     If    E ■ L  [0,1], 
k p 

then {x. ^ converges to a unique minimizer of f. 

(c) Assume that the Gateaux derivative f" exists on S and satisfies 

i2 . „„. x_  . . ..,,,,2 
u\ |z| i" <^ (f,,(x)z,zj 1 M| |z| I  for all x e S,  z e E and some u > 0. 

Assume S is convex and E is complete. Then (x, } converges to a unique 

minimizer of f on E. 

*If the Gateaux differential f" satisfies fM(x,h,h) <. ||h||2/p  for all 

h in E, x in S and some p. > 0 we can choose p.  to satisfy 

6 ^ p, ^ 2p - 6 with 0 < <5 ^ P0. The method of steepest descent could 

also be employed.  See [9]. 



The proof of (a) is given in [1J. The proof there is stated 

for E,  a Hubert space, but the same proof works when E is 

taken to be a n. 1. space.  Two comments might be made, however. 

S bounded and f uniformly continuous on S implies that f is 

bounded on S.  (See e.g. [5], p. 19.) It follows by employing the 

mean value theorem that f is bounded below on S.  The statements 

f uniformly F-differentiable and the F-derivative f  is 

uniformly continuous are equivalent.  (See [3], p. 45.) 

(b) Given e > 0 choose z' e E such that  f(z1) ■ 6 + r/2. 

Because f exists at x.  and f is convex, f^*) ^ *(*].)  "♦" lf,(xl-)»^, ~ xiJ • 

Since {ffa. )} ■*  0 and S is bounded, for all k sufficiently large 

f(x. ) <_ fU') + e/2 ■ 6 + e,  showing that L ■ 0. 

If E is reflexive and S is convex, closed, and bounded, then S 

is weakly compact. Since f is convex, the sets (x e E:f(x) <^ k} are 

closed, convex, and weakly closed, for all k. Thus  f is weakly lower 

semi-continuous.  If z is a weak cluster point of  {x. }  then for an 

appropriate subsequence, lim inf f(x.) ■ L > f(z).  Assume E » L [0,1] 
k.    - p 

and f is the norm on E. By [6], p. 78, if {x. }  converges weakly to 

z and  f(xk) "* z then {x. }  converges strongl) to z.  It follows that 

every weak cluster point of (x. } is a strong cluster point of (x. }. 

Since f*  vanishes at every weak cluster point of  (x.} and f vanishes 

only once by the strict convexity of f, every subsequence of (x. } has 

the same weak cluster point z,  showing that {x. }  converges to z. 



(c) The hypothesis of (c) Imply that f  Is Lipschitz continuous and that 

the set S is bounded. Otherwise S would contain an unbounded sequence, say {z. 

By Taylor's theorem if u e S. f(2k) >_ f(u) + | |zk - u| |[(| |zk - u| |y/2 -Hf'Cu)! |j, 

showing that  f(zk) 1 f(x0), for large k, whence S must be bounded. 

We now show that the sequence {x. }  is Cauchy. Again by Taylor's theorem 

if s > k, f(xg) - f(xk) >. [f'(xk). xs - xkJ +u||xs - xk||
2/2. Since S 

is bounded, | |x - x. || £ D where D is the diameter of  S. Thus 

llx - Xull2 l"^f(x ) - f(x.) + D||f'(x.)||} which shows that {x} is 

a Cauchy sequence.  By the completeness of E (x } has a limit, say z, 

in E, and f (z) ■ 0. If z is not unique, t>3n f'Cz.) - f iz-) • 0, z. # x. 

Thus f(.z.)  - fCzj) >, ■oil*! - «oil 1 f ^z2^ " f^zi)« ■ contradict ion. 

Hence z is unique and is a minimizer of f. 

Remarks; Useful remarks may be found in [1], [3] and [9]< 

II. NEWTONIAN STEPS AND ACCELERATION 

Suppose that at the given point x0, the function f  satisfies the 

conditions of the first example, namely 4>(x) ■ f"(x0)f'(x), where 

f"(xn) - If'Cx-)]"
1. The corresponding iteration is x ^ - x - p f"(xjf'(x ). 

_i u       u n+i   n   n - u   n 

This algorithm, when p ; 1 is known as the "modified" Newton's method (see n 

[3], p. 239, or  [7], p. 696).    In a similar manner if    f"(x)    exists and is 

uniformly bounded below on    S,    ve may define    $(x ) ■ f'Cx  )f'(x ).    We 
n   -l n    n 

shall do this below.  It is clear from what has already been said that ^ 

satisfies hypotheses of the above theorem. Our object now is to formulate 



an algorithm using    f'Cx )f,(x  ) - <Kx )    which will converge at a 
-l    n n n 

superllner rate. 

In the following we set    A(x,p)   - f(x)  - f(x -  pf'^(xK' (x))    and 

g(x,p)  - A(x.p)/p(fJ(x)f,(x),   f'Cx)]. 

Theorem.     Assume the level set     S    is a convex  subset  of a Banach space 

E.     For each    x    in    S    assume the F-derivative    f"    is continuous on    S, 

f"(x)     is onto,   | |f"(x)| |  £_ M,    and     [f,,(x)z,z]   >. m| |z | | 2    for some    m>0 

and all     z    in    E.    Set    x.   .   " x.   - p.f'^x^f'Cx, ),    where    p,     is chosen 

so that  for    e  < 1/2,    0 <  6 1 g(x. .p.) <_ 1 - 9    with    Pk " 1    if  possible.    Then; 

(a) There exists a number    N    such that  if    k  > N    then    p.   ■ 1. 

(b) There  is a unique minimizer of    f    and the  sequence    (x. } 

converges  to it  faster than any geometric progression. 

Proof,    We  have for all    x    in    S    that    M| |z | | 2  >_ [f M(x)x,x]   >_ m| |z | | 2 

and      m^Hyll2  >  [y.f,'(x)y]  im>r2||y||2.    Thus  if     <Hx)  - r(x)f,(x), 

-2 2 
then     (f,(x),^(x)] ^ mM     llf'Cx)!!   ,     showing that     $    satisfies the 

conditions of   the above  theorem.     Since    f"     is bounded on     S,    f     is 

Lipschitz  continuous,   by the mean value theorem.     By   (c)  above    (x. } 

converges   to a  unique minimizer  of     f. 

Expand    A(x,p)    to  two  terms  in  the Taylor  series with  remainder 

[fM(   )h,h),     where    h = p^,(x)f,(x).     Set     f"(0  -   f"(x)  + f'CO   -  f'U). 

Ther     g(x,p)-l -r/2- p[(f"(C) - f^x) )f[(x)f ' (x) ,f|,(x)f' (x) ]/2[f' (x) ^'(x) f ' (x) ] 

_ 1   -  ,72  - pi|f"(0  -   E"(x)| lM2/2m3.    Thus     |g(x,p)   -   1 + P/2|  1 p||fH(0 

-  f"(x)|lM  /2m.     Since    f(p, )     lies  between    x.     and    x. .,     x/,,^,x. ,r ,. .. k k k+1       0    0    1 



is a  Cauchy sequence;   and   It,  together with  its  limit    z,     is a  compactum. 

Consequently,  on  this  compactum    f"     is uniformly continuous,   so   that 

{||f"(C(p,)   -  fM(x)||}    converges  to    0,     showing  that  the choice    p     «  1 

is eventually  feasible. 

To prove  (b)  we write    x.   .  - z ■ x,   - z - p.f "(x. )f' (x. )  = 

xk -  z - pkf,
i

,(xk)f"(xk)(xk - z) + pkf'i'(xk)[f"(xk)(xk - z)  -  f'(xk)]. 

Thus     ||xk+1-z||   -   |]xk-z-pk(xk-z)||   +Pk||f'
I(xk)||||f,,(xk)(xk-2)-f(xk)I|. 

Since    f    is F-differentiable at    xk,     \\{'(z)  -  *'(\)  ' f"(xk)(z - xk) | | 

< e   | |z - xk||.     Thus     ||xk+1 - z||   »  (1 -  pk)| |xk - z||   + Pkm_1e||z - xk|| 

Q.E.D. 

Remarks; 

(1) Both sides  of  the   inverse of    f"(x)     are used  in the proof. 

(2) The analogue of the modified Newton process, namely choosing    <|i (x) 

- f"(xJf'Cx)    or    f"(x.)f,(x)    with    k    fixed also will under the hypothesis —1    u _^    k 

of the above theorem generate a sequence converging to a unique mlnimizer 

of    f.     Since     l|xk+1-z||  -   | Ix^z-P^x^r (z) (x^z) | |  + ^1 I (£'^(XQ) ] I I   ^ 

||x.-z||m        when     | |x -z | |   <  6,    the rate of convergence is eventually 

geometric provided     ||l - p   f"(x )f"(z) | |   <   1.     Since 

||i - pkf^ (x0)f,'(Z)|| < i - pk + pkMr(x0)|| ||(f"(x0) - f"(z)||,   if 

llf'Cx ) - f"(z)||     is sufficiently small,     p     =   1    will generate a 

sequence converging to    z    at the rate of geometric progression.     A sufficient 

condition for  the global geometric  convergence would be     (M/m)   <   1/2,     since 

-1 

(3)    Pertinent  remarks may be  found   in   [3). 

||f,,(x)|| IM   and   ||r(x)||  im"1. 



III.     EXAMPLE 

a)     We consider the  following  problem which arises  from a 

linearized  rendezvous  problem.     See   for example   [8],   [9]   and   [4], 

In  [A]   this problem is  solved   in the   "dual".     We consider  here a 

construction  in  the "primal".      In   [8]   and   [9],  we have discussed 

this  problem  in  the spaces   £.     and    £j\    we now discuss  the 

problem  in   £       for    p   >  2.     Let    £      denote  the direct   sum of    n 
P P 

L  [0,1]     spaces.    Thus a point    x c £      if    x =   (x,,...,x   )    and pr r p In 

x.   E   L   [0,1);     the norm  in   £      will  be     ||x||     •=   [ f1 |x(t) I Pdt]1/p 

i p p p *, 
rn  2  ii' F    *o 

where  |x(t) | - I Jj x (t)  2.  Since /n" max {x (t) : 1 1 i 1 n} ^ |x(t) | , 

||x||   is well defined.  Let  {u  : 1 <_ i < m} be a linearly independent 

11 i 
set in £  .  Set — + — « 1.  Since  q < p. u"1  is also in £  . Given 

P p    q q 
numbers     a.,   (1  <^ i <^ m)    define  the  affine  subspace 

M =  {x c ^    :   [u ,x]  ■ a,   :   1  <   i <   m}.    We shall consider the problem pi—— r 

of minimizing     f (x) "   | |x| |p    on    M.     The limits    p -•• 1    and    p ->• «> 

correspond  to  the cases of rendezvous with minimum  fuel and minimum 

thrust amplitude respectively.      In what  follows we  shall assume for 

simplicity that    n = 2.     There are no  further difficulties  in the general 

case. 

We  first  observe  that   if  the Gateaux differential   (G-differential) 

of     f    exists   it   is given by: 



1 

f,(x)h = P /  |x(t)|P"2[x1(t)h1(t) + y,2(t)h2(t)]dt 

f n 1 F X1(t) X7(t)       1 = Pj lx(t)l   [^Whl(t)+ü(^h2(t)Jdt 

IPllxll^fllhJI^IIh^^]. 

Here Holder's inequality has been employed on the function t *   |x(t)| 

which belongs to  L [0,1].   We have also used ll'l i  for the norm in  L [0.11. 
q P P 

Thus  the G-derivative of     f     exists. 

Observe now that   if   the  second G-differential  exists it   is given by: 

1 

[f,,(x)h,k]  = p(p-2) ( |x(t)iP"4(x1(t)h1(t)  + x2(t)h2(t))(x1(t)k1(t)   + x2(t)k2(t))dt 

1 

+p/^   |x(t)|P"2(k1(t)h1(t)  + k2(t)h2(t))dt 

4) 
/_   ? / x   (t) x   (t) \/xi(t) ^l^ \ 

'0 

1 o 

» p(p-2)    f   |x(t) 

0 

1 

+ p   A |x(t)|p"2(k1(t)h1(t) + Mt)h2(t))dt 

•'o 

|x(t)|P"2|h(t)||k(t)|dt + p    /   |x(t)|P"2|h(t)||k(t)|dt. 

u ^0 
1 

If    x  c  L  ,   y f   L      and     z   E  L ,     and    - + — + — «  1,    then      /    |x(t)y(t)z(t) Idt 

<_  ||xj|    ||y||   ||z||   .     Since  the  function    t  -*   [x(t)|P        belongs  to    L   ,    where 

p'   = -^r ,    and    -, + - =   I    it   follows that   if    u(t)  -   lx(t)lP"2, 
p-2 P       p 

ry,1|u(t)|r,dt|1/P    =l|x||P"2.     and      [f(x)h.k)   ! (2p2 -  3p)||x||p-2||hMp||k||p. 

As  before,   let     S    denote   the   level  set   of     f     at     x       where    x       will  be 



10 

2Z1 2Z1 
o 2 

subsequently chosen in M.  Thus if x * S, ||xj|P~^ = (f(x)] " <_ (f(x )] 

showing that  (f"(x)h,k]  is uniformly bounded on S,  if h and  k are 

confined to the unit sphere.  It follows by Taylor's theorem that  f' is 

F - d ifferentiable on S.  By the generalized mean value theorem it 

further follows that  f  is Lipschitz continuous on  S. 

We now construct x^ on M.  Let x^ = £c.u ,  Thus x,^ lies on 
0 0    j 0 

M  if and only if  ^"c [u ,uJ] = a . We show that the null space of the 

i 
i i matrix  {(u ,u ]}  consists only of the 0 element so that c.  is 

uniquely determined.  If for some c | 0, Sc.[u ,u ] = 0 then 

i i       i    1 
Ec Ec.[u ,u ] ■ [Ec.u ,Zc.u ] ■ 0, contradicting the linear independence 

i 'l J      i ' ' i 
of the set  (u : 1 1 i 1 n}.  Let N - ix e ^ : [u ,x] = 0, i = l,...,m}. 

We now choose h to maximize [f,(x),h]  subject to  i|h|| = 1 and 

h t N.   The maximum is achieved because the sphere meets N in a 

weakly compact set and the linear function  [fCx)»»]  is weakly continuous. 

The maximization can be accomplished by the method of Luler multipliers 

(10).  Let  C(h) - ||h||P - 1 and l Ah)  « [u ,hj.  Then a necessary 

condition that h maximize  f'Cx.h) subject to  ^(h) « ^.(h) =0  is 

that there exists  r.,  (1 ^ i <_m+l),  such that  f,(x)k = 

c.p / |h(t)|P'2(h,(t)k1(t) + h9(t)k9(t))dt + J] c.lu-1"1^]  for all k  L £. 
1 •?) 1   1      2   2       j^2  J P 

It follows that 

p|x(t)|P~2xi(t)  =  pc1|h(t)|P"2hi(t)  + c2uj(t)  +...+ cm+Ju^(t)     i-1,2. 

10 1 

Let     f.(t>   =   (pc.)      [p|x(t)|P    x. (t)  - c„u. (t)   -...-c   . .ii "'(t) ] ,   and   observe   that 
i 1 i ^   i m+1   i 

|h(t)i2p"2 =   f2(t)  + f2(t). 

Therefore: 

il i 
h.(t)  =   [(f2(t)   -»-  f2(t)2)Pf.(t)/(f2(t)   ■»- f2(t))2 

1 1 «. 1 1 z 



11 

showing that  h  i I, . We now solve the non-1 int-ar equations  ,'(h) = 0, 

^.(h) = 0 (1 ^ i < m)  for  c„,...,c ,..  If necessary, we replace h 
i —  — l m-rl 

by  -h  to ensure that we have a maximizer rather than a minimizer.  The 

solution is now unique, due to the strict convexity of the sphere in £  . 
P 

Because of the uniqueness of the extremal, the  h we have constructed 

nust be this extremal. 

The subspace  N is also an £      space. Minimizing  f(x)  on M 

is equivalent to minimizing  f(y + xn)  on N,  with x = y + x . Clearly 

the gradient of the function  f  restricted to  N  is h[f'(x),h].  (See 

12, above.)  It follows, therefore, if  4 (x) = hlf (x),hl,  then  : 

satisfies the conditions required for the theorem of I. 

By the theorem of I we may infer that every weak cluster point z of 

k k 
the sequence  {x }  minimizes  f  and  f (x ) converges downward to f(z). 

Furthermore, since z is unique in the above problem,  {x  -^ z. We 

now show, moreover, that  {x } •• z.  For each component  x  of x, 

(1 1 i 1 n)  we have that  0 1 /  |x1(t) |Pdt ^ T  |x(t)|Pdt.  Since 

•'o •'o 

|f(x,)}     converges,   the numbers     Vu   =   I       !x,(t)!   dt     are   bounded  and   the 

sequence     tx, }     has a weak  cluster   point.     In  fact,      ^ vi ^     converges.     To 
K K 

prove  this,   observe  that   since     {x, }-*z,   ix,1' -* z. .     Take a   subsequence 

|x   }     such   that     ly   1   ► y   .     Since     ^x. }     converges  both  weakly and   in     L 

norm,     ix, I     converges  strongly.     Thus     {*K'   ' Z
'.     say.     By  continuity 

f(x   )   ►   fCz')   =   f(z).     By  uniqueness,     z  =  ?.'.     Therefore,   the  subsequence 

(x, }   '  z   .      Suppose  that     (y. 1     had  another cluster   point     y     t  y   . 
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Take a new subsequence  ix. }  such that  ^v. ^ * y .  Again  (x, ! • z , 
k k k 

and therefore,  iy,*} * /  |z'( ); dt = v ,  a contradiction.  It follows, ere fore,  {v } -I  \z 
' k  Ja 0 

therefore, that  {x. } * z. 

(b)  The above processes require that at each cycle a non-linear 

system be solved to determine the gradient.  This can be circumvented bv 

imbedding the problem into a Hilbert space.  Specifically, assume that the 

components of  u   are bounded and measurable.  Let £~     denote the direct 

sum of  L~[0,1)  analogously to the above, and define 

M* = - x ■ £  : [u ,x| = t  : 1 ^ i _ m .  Let  f now be defined on M*. 

Since f  achieves a minimum on M and  M CM',  f  also achieves a 

minimum on M'.  Because M  is dense in M',  the minima are equal.  The 

gradient of  f  on M'  is merely the restriction of the gradient of  f  in 

£,    to M'  and is obtained bv orthogonal projection.  See [9].  In 

general,  f'Cx)  does not exist.  But if  x  is bounded and measurable, 

i.e., x  ^, f'Cx) £*    and . f (x)       £1.     The set  S  is bounded in 

£      and this implies  S  is bounded in £,,     since   I x | I ,, ■ ' |x| '   if 
p J 2  -   '       ' ' p 

P : 2. 

Since     f     is  convex and continuous,     S     is closed   bounded  and  convex; 

furthermore,   the   derivatives of     f     are  densely defined  on     S.     Assume 

•   M',   x £       and     u        ^ ,   (1 im).     Then     x   .,      is  well   defined 
n n      *" ■ —       — n*-1 

x 

and is also in £  .     To set this, verify that :\'{\   )       £       and the 
■ n ■ 

projection  of    '. f(x   )     on  the  set     ix   ■   £0   :   (u   ,x|   =0,   (1        i       n) *     is 

also   in    £ .     We   are  able  to conclude  a^ain   therefore   that   there   is  a 

unique minimizer     z,     and  that     ,XL'    '  7     -'»d     f(x,)   af(7.). 
K K 
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